

# **Synthetic Biology and Biological Diversity**

### Felix Moronta, PhD

Senior Programme Assistant, Regulatory Science Group International Centre for Genetic Engineering and Biotechnology (ICGEB) Trieste, Italy.





## What is Synthetic Biology?

".... a further development and new dimension of modern biotechnology that combines science, technology and engineering to facilitate and accelerate the understanding, design, redesign, manufacture and/or modification of genetic materials, living organisms and biological systems"





# Synthetic Biology: Supporting Technologies and Areas of Research





### **Synthetic Biology Applications**

Engineered

gene drives

#### **Applications intended for** conservation benefits

**Reduce Threat** (Mitigation)



Example Eradicate invasive rodents that cause extinction of other species on island ecosystems.

> Engineered gene drives

**Increase Resistance** (Adaptation)



Example Modify the genes of corals to increase resistance towards warming oceans.

**Genome editing** 

#### **Applications not intended** for conservation benefits



**Genome editing** 

disease.

**Genome editing** 

Engineering



Example Eliminate or mitigate toxic effects of chemical waste.

> **Genome editing Directed evolution**

Modified from Macfarlane et al., (2022)

# Synthetic Biology: Governance Considerations



#### **Diverse Impacts**:

- Generalizations across applications not correct
- Each application demands case-by-case consideration



#### **Regulatory Framework**:

- International treaties and laws attempt regulation
- Fragmented framework poses risks of regulatory gaps and overlaps



#### Science-Based Risk Assessment:

- Cornerstone of current governance
- Recognized as one element in a broader decision-making process



#### Shift in Governance:

- Beyond traditional biosafety considerations
- Encompass social impacts, ethical principles, and social justice



#### **Incorporating Social Sciences:**

- Understanding broader implications for society
- Essential for responsible advancement



#### Equitable Distribution:

- Benefits and risks distributed fairly
- Avoiding undue burdens on vulnerable populations



#### Inclusive Decision-Making:

- Active involvement of diverse stakeholders
- Collaboration among scientists, policymakers, ethicists, and communities



#### Adaptive Governance:

- Agility and responsiveness to the evolving landscape
- Balancing innovation with legal, ethical, and societal values



# Balancing Innovation and Responsibility in Synthetic Biology

Updated version covers:

- Supporting technologies and tools
- Areas of synthetic biology research
- Applications and products of synthetic biology
- Potential impacts on the conservation and sustainable use of biodiversity
- Social, economic and cultural concerns
- General biosafety concerns
- Governance and regulation
- Potential implications of the CBD
- Other relevant international rules
- Challenges, gaps and overlaps





### ICGEB An International Organisation in the United Nations System



80+ Signatory States, 60+ Member States, 3 Components: Trieste (Italy) - New Delhi (India) - CapeTown (South Africa) and a network of 40+ Affiliated Centres

Developing knowledge

